Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Xiao-Juan Ji,^a Xuan-Gan Liu^a and Guo-Wu Rao^b*

^aSchool of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310012, People's Republic of China, and ^bCollege of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China

Correspondence e-mail: rgw@zjut.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean σ (C–C) = 0.003 Å R factor = 0.044 wR factor = 0.119 Data-to-parameter ratio = 16.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the title compound, $C_{21}H_{23}ClO_2S$, the three fused rings are roughly coplanar. The two benzene rings are twisted by a dihedral angle of 7.15 (15)°.

1-Chloro-4-octyloxy-10-thiaanthracen-9-one

Received 4 April 2006 Accepted 11 April 2006

Comment

Thioxanthone derivatives are good photoinitiators with excellent capabilities in UV-curing materials. They have been widely used in UV-curing applications because they absorb at a longer UV wavelength and have a faster photocuring speed than other photoinitiators (Allen *et al.*, 1994, 1999). In a continuation of our research on new synthetic pathways of the title compound, (I) (Liu *et al.*, 2003), we have obtained pale-yellow crystals from ethanol suitable for X-ray structural analysis.

The molecular structure of (I) is illustrated in Fig. 1. The three fused rings are roughly coplanar, the largest deviation being 0.171 (2) Å for C9. However, the two benzene rings are slightly twisted, making a dihedral angle of $7.15 (15)^{\circ}$. The aliphatic carbon chain is also roughly planar and is nearly

Figure 1

The molecular structure of compound (I), with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are represented as spheres of arbitrary radii.

© 2006 International Union of Crystallography All rights reserved

organic papers

coplanar with the thioxanthone system, making a dihedral angle of only 7.73 $(14)^{\circ}$.

Weak $C-H\cdots O$ hydrogen bonds result in the formation of a dimer arranged around an inversion centre (Fig. 2).

Experimental

The title compound was prepared from 1-chloro-4-hydroxythioxanthone and 1-bromooctane, according to the procedure of Liu *et al.* (2003). A solution of the compound in ethanol was concentrated gradually at room temperature to afford pale-yellow prisms.

Crystal data

C ₂₁ H ₂₃ ClO ₂ S	$V = 956.01 (18) \text{ Å}^3$
$M_r = 374.91$	Z = 2
Triclinic, P1	$D_x = 1.302 \text{ Mg m}^{-3}$
a = 10.0899 (11) Å	Mo $K\alpha$ radiation
b = 10.2174 (11) Å	$\mu = 0.32 \text{ mm}^{-1}$
c = 10.5201 (11) Å	T = 298 (2) K
$\alpha = 114.223 \ (1)^{\circ}$	Prism, pale yellow
$\beta = 94.019 \ (1)^{\circ}$	$0.40 \times 0.20 \times 0.15 \text{ mm}$
$\gamma = 101.309 \ (1)^{\circ}$	
D U U	

Data collection

Enraf-Nonius CAD-4	3798 independent reflections
diffractometer	2989 reflections with $I > 2\sigma(I)$
ω scans	$R_{\rm int} = 0.012$
Absorption correction: multi-scan	$\theta_{\rm max} = 26.3^{\circ}$
(ABSCOR; Higashi, 1995)	3 standard reflections
$T_{\min} = 0.883, T_{\max} = 0.954$	frequency: 60 min
5761 measured reflections	intensity decay: 2.1%

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0555P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.044$	+ 0.2576P]
$wR(F^2) = 0.119$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.02	$(\Delta/\sigma)_{\rm max} < 0.001$
3798 reflections	$\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^{-3}$
227 parameters	$\Delta \rho_{\rm min} = -0.35 \ {\rm e} \ {\rm \AA}^{-3}$
H-atom parameters constrained	

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$\overline{C8-H8\cdots O2^{i}}$	0.93	2.46	3.360 (3)	163

Symmetry code: (i) -x + 1, -y + 2, -z.

Figure 2

A view showing the formation of a dimer through $C-H\cdots O$ hydrogen bonds (dashed lines). H atoms not involved in hydrogen bonds have been omitted for clarity. [Symmetry code: (i) -x + 1, -y + 2, -z.]

H atoms were positioned geometrically and treated as riding on their parent C atoms, with C–H distances of 0.93 (C_{aromatic}), 0.96 (CH₃) and 0.97 Å (CH₂), and with $U_{iso}(H) = 1.2U_{eq}(C)$, or $1.5U_{eq}(C)$ for methyl groups.

Data collection: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

References

- Allen, N. S., Mallon, D., Timms, A. W., Green, W. A., Catalina, F., Corrales, T., Navaratnam, S. & Parsons, B. J. (1994). J. Chem. Soc. Faraday Trans. 90, 83– 92.
- Allen, N. S., Salleh, N. G., Edge, M., Shah, M., Ley, C., Morlet-Savary, F., Fouassier, J. P., Catalina, F., Green, A., Navaratnam, S. & Parsons, B. J. (1999). *Polymer*, **40**, 4181–4193.
- Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.1/1.2. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Liu, X.-G., Lv, Y.-P. & Hu, W.-X. (2003). Fine Chem. 20, 343-344.
- Sheldrick, G. M. (1997). SHELXL97 and SHELXS97. University of Göttingen, Germany.